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Penetration depth study of anisotropic superconductivity in 2H -NbSe2
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We report measurements of the temperature dependence of both in-plane and out-of-plane pen-
etration depths (λa and λc respectively) in 2H -NbSe2. Measurements were made with a radio-
frequency tunnel diode oscillator circuit at temperatures down to 100 mK. The data show that
there is a reduced energy gap on one or more of the quasi-two-dimensional Nb Fermi surface sheets.
In contrast to some previous reports, we find that the gap on the Se sheet is at least as large as that
on the Nb sheets.

The superconducting properties of the transition metal
dichalcogenide compound 2H -NbSe2 have been known
for a long time to be unusual, with several features which
cannot be explained by the conventional isotropic BCS
model. There has been speculation that this is linked
to the fact that the superconductivity emerges from a
charge density wave state (TCDW ≃ 33K) [1]. Recently,
there has been renewed interest in this compound be-
cause of the possibility that it may be, like MgB2 [2],
a multigap superconductor (i.e., with distinct supercon-
ducting energy gaps on different Fermi surface sheets).

Evidence of significant gap anisotropy is found in heat
capacity C measurements [3, 4]. The low temperature
behavior of C (T ≪ Tc) is indicative of a small mini-
mum gap (∼ 1kBTc) and the non-linear increase in field
of C [4] and thermal conductivity κ [5] suggests the pres-
ence of highly delocalized quasiparticles well below Hc2.
Boaknin et al. [5] conclude that κ(H) is consistent with
two distinct energy gaps on different Fermi surface sheets
which differ by a factor ∼3. A distribution of gap val-
ues, varying by a factor ∼ 2, has also been observed in
tunnelling measurements [6, 7].

In order to correctly interpret these experiments it is
essential to have a good understanding of the normal
state electronic structure. Electronic structure calcula-
tions within the local density approximation [8, 9] show
that three bands cross the Fermi level giving rise to five
Fermi surface sheets. Near the Γ point there is a small
pancake like sheet which derives mostly from the Se p
bands. This sheet should contributes only ∼ 2% to the
in-plane superfluid density but ∼ 80% to the c-axis su-
perfluid density (see Table I). The other four sheets de-
rive from the Nb d bands and are weakly warped tubes
running along the c-axis, centered either on the Γ or K
points. The two surfaces derived from the bonding Nb d
band are significantly more warped than those from the
antibonding Nb d band.

This bandstructure has been found to be in good over-
all agreement with angle resolved photoemission spec-
troscopy (ARPES) [10, 11] and de Haas-van Alphen

(dHvA) measurements [9]. Significantly, the formation
of the CDW state does not seem to lead to major Fermi
surface reconstruction. dHvA measurements have only
resolved signals originating from the small Se pancake
and show that, although the shape is similar to band-
structure calculations, its size is somewhat smaller. This
reduces its contribution to the c-axis superfluid density
by ∼50% [8]. The dHvA and ARPES results also show
that mass renormalization factor (1 + λm∗) varies con-
siderably between sheets. λm∗ is approximately 6 times
larger on Nb sheet 17b than on the Se sheet 16 (see Table
I).

There have been two experiments which have given
k-resolved information about the size of the supercon-
ducting energy gap ∆(k). Analysis of dHvA oscillations
below Hc2 have indicated that there is a relatively large
energy gap on the Se pancake sheet, (1-2kBTc) [9]. Al-
though the theoretical interpretation of the size of the
additional damping in the superconducting state is far
from straightforward [12] (especially in a multigap su-
perconductor), the existence of a sizeable non-zero gap

TABLE I: Band structure estimates of the contribution of
each Fermi surface (FS) sheet to the superfluid densities in
each crystallographic direction (a,c). The bare plasma fre-
quencies ωP (in eV) from Ref. 8, are related to the renormal-
ized superfluid densities by ρ = (ωP e/c~)2/(1 + λm∗), where
λm∗ is the mass renormalisation factor derived from dHvA
measurements [9] (band 16) and ARPES [10] (bands 17 and
18). The numbers in parenthesis are the percentage contribu-
tions of each sheet to the total renormalized superfluid den-
sity.

FS Sheet ωP,a % ωP,c % λm∗

16 0.4 (2) 2.16 (85) 0.3

17a 1.63 (25) 0.78 (8) 0.85

17b 1.65 (16) 0.86 (6) 1.9

18a 1.60 (24) 0.13 (0.2) 0.85

18b 1.85 (32) 0.26 (0.9) 0.85
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would appear to be a robust feature of the data. ARPES
measurements [11] on the other hand, have indicated that
the gap on the Se sheet is very small (below 0.16 kBTc),
whereas it is much larger (1.6 ± 0.16kBTc) on the other
four sheets. It should be mentioned however, that these
latter measurements were performed at T = 5.3K, which
is very close to Tc ≃ 7.1K

In an anisotropic superconductor the temperature
dependent components of the superfluid density ρ =
1/λ2(T ) are sensitive to the distribution of the size of
the superconducting gaps on the Fermi surface [13]. In
this paper we present measurements of the temperature
dependence of both the in-plane and c-axis magnetic pen-
etration depths [λa(T ) and λc(T )] of NbSe2 from 100 mK
up to Tc. Our data show that there is a reduced energy
gap on one or more of the Nb Fermi surface sheets, but
the gap on the Se sheet is not significantly smaller.

The temperature dependent part of the penetration
depth was measured in single crystals of NbSe2 using a
radio frequency (RF) resonant tunnel diode circuit [14].
The sample was attached with vacuum grease to a sap-
phire rod, the other end of which is attached to a tem-
perature controlled stage. Changes in the resonant fre-
quency of the circuit relative to the base temperature
(∆F ) are directly proportional to changes in the field
penetration in the sample. As the RF magnetic fields
are very weak (∼ 10−5 T), and the dc field is screened
with mu-metal to a similar level, we ensure the sample
is always in the Meissner state. For H‖c the screening
currents flow only in the basal plane and ∆F = α∆λa,
where the geometric factor α is estimated using the tech-
nique described in Ref. [15]. For H⊥c currents flow both
in the plane and along the c-axis, and (neglecting the
small contribution from the top and bottom faces) for a
rectangular sample with dimensions lx, ly and lz [x,y are
in-plane and lx, ly, lz ≫ λ] ∆F for H‖y is given by [15]:

∆F/∆F0 = 2∆λa/lz + 2∆λc/lx. (1)

Here ∆F0 is the frequency shift obtained when the sam-
ple is completely removed from the coil and accounts for
the sample demagnetizing factor as well as the coil cali-
bration factor.

Measurements were conducted on samples from three
different sources (Tsukuba, Lausanne, Bell labs) in three
different laboratories. All samples were grown via the
usual iodine vapor transport technique and are known
to be of high quality ,having a high Tc ≃ 7.1K and low
residual resistances (RRR≃ 40). Some of the samples
were from the same batch as those used for dHvA mea-
surements [9]. Experiments in Bristol were performed in
either a dilution fridge (Tmin ≃ 100 mK) or a pumped
4He cryostat (Tmin ≃ 1.3 K). In Grenoble and Urbana-
Champaign a 3He cryostat was used (Tmin ≃ 0.5 K). In
total more than 15 samples were measured, several in
both field orientations.
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FIG. 1: Temperature dependence of the in-plane penetration
depth, ∆λa in single crystals of NbSe2. Data for three dif-
ferent samples are shown. The absolute scale of ∆λa is most
accurate for sample 1 (see text). For samples 2 and 3 the
data have been divided by 1.3 and 1.5 respectively and off-
set for clarity. Inset: Frequency shifts at higher temperature
showing the charge density wave transition.

Fig. 1 shows the low temperature variation of the
in-plane penetration depth data which probes mostly
the excitations on the Nb sheets (see above). Data is
shown for three samples measured in different laborato-
ries. Sample 1 (Bristol) was very thin (aspect ratio ∼40)
with H⊥c, hence the contribution from ∆λc is negligi-
ble (< 2%), samples 2 (Urbana/Ames) and 3 (Grenoble)
were thicker with H‖c. All three curves are fitted to the
expression

∆λ

λ(0)
≃

√

π∆0

2T
exp

(

−
∆0

T

)

, (2)

which approximately reproduces the full solution to the
BCS equations for T <

∼ Tc/3. For all samples we find
∆0 = 1.1 ± 0.1 Tc. The data clearly show the presence
of excitations with an energy gap much smaller than the
weak coupling BCS value (∆0 = 1.76Tc) on the quasi-2D
Nb sheets of Fermi surface.

The temperature dependence of ∆λa was very simi-
lar in all samples. The absolute values of ∆λa measured
with H‖c are consistently higher than those for H⊥c (in
the opposite sense to that expected from the additional
λc contribution for H⊥c). It is likely that this results
from the mica-like morphology of the crystals. Although
very flat (001) faces may be prepared by cleaving, cut-
ting the crystal perpendicular to this direction produces
splintered edges which have a larger effective area than
their geometric cross-section (and hence larger effective
field penetration). For this reason, we believe the cali-
bration factor is most accurately determined for the thin
sample with H⊥c (sample 1 in Fig. 1) where ∼98% of
the signal comes from the flat faces.
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FIG. 2: Low temperature behavior of ∆λc determined by
cutting the sample (see text). Data for two different samples
are shown. For sample 5 the data have been divided by 2 and
offset for clarity. The solid line is a fit to Eq. 2 up to 2.4 K.
The lower inset shows the geometry of the sample before and
after cutting. Upper Inset: Raw measured frequency shift for
a thick sample with H⊥c (same sample as #2 in Fig. 1).

Although the above in-plane data clearly shows the
presence of a reduced gap on the Nb sheets it contains
very little information about the gap on the Se sheet. If
the gap on the Se sheet is significantly smaller than that
on the Nb sheets we would expect the temperature de-
pendence of λc to differ markedly from that of λa. We
have investigated this in two ways. For thick samples,
with H⊥c a significant proportion of the total measured
∆F (T ) comes from current running along the c-axis. In
the inset to Fig. 2 we show data for a sample with aspect
ratio (lz :lx ≃1:2). ∆F is temperature independent for
T <

∼ 1.2 K which clearly shows that the gap is not sub-
stantially smaller on the Se sheet than on the Nb sheets.

An alternative approach is to measure ∆F with H‖x
before and after cutting the sample in half along the field
direction (see Fig. 2). In principle, the in-plane contri-
bution is unchanged before and after cutting, so by sub-
tracting the two frequency shifts we isolate the signal
coming from the c-axis currents. In practice however,
there could remain some contribution from λa because
the effective edge area may change when the sample is
cut due to splintering.

In the main part of Fig. 2 we show our result for the low
temperature behavior of ∆λc determined by the cutting
method. The data are temperature independent below
∼ 1.2 K and a fit to Eq. 2 gives ∆0 = 1.3 ± 0.1Tc (the
uncertainty reflects the changes in ∆0 as the temperature
fitting range is varied up to Tc/3). This shows that the
gap on the Se sheet is at least as large as that on the
Nb sheets. The measured temperature dependence of λc

is reproducible between the two samples measured but
there is an uncertainty in its absolute magnitude (see
figure).
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FIG. 3: Temperature dependence of the normalized in-plane
superfluid density ρ̃a. The solid symbols are ρ̃a calculated
from the measured ∆λa(T ) with the λa(0) values indicated.
The solid lines are fits to the two gap model described in the
text. The dashed line is the weak coupling BCS prediction
with ∆0 = 1.76Tc.

In order to proceed further with the analysis it is con-
venient to calculate the normalized superfluid density,
ρ̃ = λ(0)2/λ(T )2. From measurements of the reversible
magnetisation in the vortex state [16] in some of the same
samples shown above we find λa(0) = 1400± 100Å. This
in reasonable agreement with muon spin rotation mea-
surements [17] which give λa(0) = 1250Å.

We show in Fig. 3 the calculated in-plane ρ̃(T ) for
a range of values of λa(0) which encompass the exper-
imental uncertainty. As the data clearly do not follow
the standard BCS behavior we have attempted to model
ρa(T ) using a BCS approach with a k-dependent gap. In
the clean local limit BCS theory ρa is given by [13]

ρa(T ) =
µ0e

2

4π3~

{
∮

dSF

v2
a

v

+ 2

∮

dSF

v2
a

v

∫

∞

∆k

df(ε)

dε

ε

(ε2 − ∆2

k)
1

2

dε

}

(3)

where dSF is an element of Fermi surface, v is the Fermi
velocity, f is the Fermi function and ∆k is the k depen-
dent energy gap.

Our first approach is to assume that there are different
isotropic gaps on each of the two quasi-2D Nb bands
(similar to the situation in MgB2) [18, 19, 20]. Eq. 3
then reduces to

ρ̃(T ) = xρ̃[T, ∆1(T )] + (1 − x)ρ̃[T, ∆2(T )] (4)

where x is the Fermi surface weight, which in the clean
limit is proportional to ω2

P,a on each pair of sheets.
∆1,2(T ) are assumed to have the BCS weak coupling
temperature dependence but a variable low temperature
amplitude. The fits to the data with this model are ex-
cellent (see Fig. 3). The parameters are given in Table



4

TABLE II: Variation of the fit parameters to models of the
in-plane superfluid density, as a function of the assumed zero
temperature value of λa. ∆1, ∆2, and x are the parameters of
the two-gap model (Eq. 4) and ∆(0) and ǫ are the parameters
of the 6-fold anisotropic gap model (Eq. 5). The final line
shows the parameters found by fitting the same models to
the heat capacity C data of Ref. 4.

Two gap 6-fold gap

λa(0) ∆1

Tc

∆2

∆1

x ∆min(0)
Tc

1+ǫ

1−ǫ

1200Å 0.99 1.59 0.43 0.94 1.74

1400Å 1.04 1.76 0.49 0.91 2.07

1600Å 1.08 1.91 0.50 0.91 2.33

C 1.31 1.76 0.30 1.25 2.31

II. The value of the small gap varies little with λa(0)
and is close to that found from fitting Eq. 2. The gap
ratio is ∆2/∆1 = 1.8±0.2 and approximately 50% of the
superfluid density resides on each pair of FS sheets.

As NbSe2 is hexagonal, another approach is to assume
a gap with 6-fold symmetry on all Fermi surface sheets,
which are approximated as simple tubes, i.e.,

∆(φ, T ) = ∆min(T )
[1 + ǫ cos(6φ)]

1 − ǫ
(5)

where as above ∆min(T ) is assumed to have the BCS
temperature dependence and φ is the in-plane angle. The
fits to this model (not shown) are as good as for the two
gap model above. The two free parameters [∆min(0) and
ǫ], which vary slightly with the assumed λa(0), are given
in Table II. The ratio of the maximum to minimum gap
(1 + ǫ)/(1 − ǫ) = 2.0 ± 0.3, which is close to that found
for the 2 gap fits.

By analyzing the zero field specific heat data of Ref.
4 with the same models [18] we find that the gap values
are ∼ 30% higher than those from the superfluid density
analysis, however the values of the gap anisotropy are
very similar (see Table II) [21].

Usually, very high purity samples are required for
any intrinsic gap anisotropy to be observed experimen-
tally. More quantitatively the criterion for observing an
anisotropic gap is [22]

~τ−1 ≪
√

〈∆〉δ∆ (6)

where τ−1 is the impurity scattering rate, 〈∆〉 is the av-
erage gap and δ∆ is its variation over the Fermi surface.
Using the parameters of either the 6-fold anisotropic gap
model or the two gap model yields

√

〈∆〉δ∆ ≃ 7K.
The residual resistance of our samples is typically ρ0 =
2.8µΩcm. Assuming isotropic scattering, we can estimate
the mean free path ℓ = µ0c

2
~

2va/(ω2
Pae

2ρ0) = 280 Å,
and ~τ−1 = ~va/(kBℓ) ≃ 25 K (taking va as the average
ARPES value[10]). This suggests that if the scattering

were isotropic then τ−1 is ∼4 times too high for the gap
anisotropy deduced from our models [23].

It seems then, unlikely that gap anisotropy within a
single sheet could survive with this amount of scattering.
However, reduced scattering between the two Nb bands
(17 and 18) could allow two different gaps to exist on
these pairs of FS sheets (as for MgB2 [24]). As the low
temperature fit to ∆λc gave a slightly larger value of ∆0

it is likely that the smaller of the two gaps is on the band
18 Nb sheets as these should contribute very little to λc.
A larger gap on band 17 is consistent with the larger
value of λm∗ found on sheet 17b.

In conclusion, our measurements of the anisotropic
temperature dependence of the superfluid density in
NbSe2 show evidence for two gap superconductivity, but
in contrast to some previous reports, we argue that it is
likely the smaller energy gap is located on the Nb sheets
rather than on the Se sheet.

We thank I. Mazin and for useful discussions, as well
as H. Berger, Y. Onuki and P. Gammel for providing the
NbSe2 samples.
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